Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820230330040305
Journal of Life Science
2023 Volume.33 No. 4 p.305 ~ p.314
Morin Protects Normal Human Dermal Fibroblasts from Ultraviolet B-induced Apoptosis
Park Jeong-Eon

Ao Xuan Zhe
Mei Jing Piao
Kang Kyoung-Ah
Pincha Devage Sameera Madushan Fernando
Herath Mudiyanselage Udari Lakmini Herat
Hyun Jin-Won
Abstract
Ultraviolet B (UVB) irradiation causes skin diseases by inducing cellular oxidative stress, photoaging, and inflammation. This study aimed to investigate the protective effects of morin against UVB-induced oxidative stress in normal human dermal fibroblasts (NHDFs). Morin has been reported to be a potential therapeutic candidate for oxidative stress-mediated diseases, neurodegenerative diseases, and inflammation. Since morin has been identified as a potential antioxidant, we speculated that morin could alleviate UVB-induced apoptosis in NHDFs. Cell viability and intracellular reactive oxygen species (ROS) levels were measured using the MTT assay, H2DCFDA, and the DHE staining method, respectively. Lipid peroxidation and protein carbonyl formation were tested using ELISA kits. DNA fragmentation and comet assay were used to assess DNA damage. Apoptotic bodies were analyzed using Hoechst 33342 staining and TUNEL assay. The expression of apoptosis-related proteins was examined using Western blot analysis. Morin showed a cyto-protective effect by scavenging UVB-induced ROS, increasing the expression of antioxidant-related proteins and inhibiting UVB-induced oxidative alterations such as lipid peroxidation, protein carbonylation, and DNA damage. Morin protects against UVB-induced cell apoptosis by inhibiting Bcl-2-associated X protein, caspase-9, and caspase-3 expression, while increasing the expression of the anti-apoptotic protein Bcl-2. These effects of morin were conferred through decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. The results demonstrated that morin may be developed as a preventive/therapeutic drug to be used to prevent UVB-induced skin damage.
KEYWORD
Apoptosis, fibroblasts, morin, reactive oxygen species, ultraviolet B
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)